
ar
X

iv
:a

st
ro

-p
h/

97
12

03
0 

v1
   

2 
D

ec
 1

99
7

Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 7 January 2004 (MN LATEX style file v1.4)

Theory and Statistics of Weak Lensing from Large-Scale

Mass Inhomogeneities

Marc Kamionkowski1,2, Arif Babul3,4, Catherine M. Cress2,5, Alexandre Refregier1,2,6

1Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027 U.S.A.
2Columbia Astrophysics Laboratory, 538 West 120th St., New York, NY 10027 U.S.A.
3Department of Physics & Astronomy, University of Victoria, P. O. Box 3055, Victoria, BC V8W 3P6 Canada
4Department of Physics, New York University, 4 Washington Place, New York 10003 U.S.A.
5Department of Astronomy, Columbia University, 538 West 120th Street, New York, NY 10027 U.S.A.
6Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 U.S.A.

7 January 2004

ABSTRACT

Weak lensing by large-scale mass inhomogeneities in the Universe induces correlations
in the observed ellipticities of distant sources. We first review the harmonic analysis
and statistics required of these correlations and discuss calculations for the predicted
signal. We consider the ellipticity correlation function, the mean-square ellipticity,
the ellipticity power spectrum, and a global maximum-likelihood analysis to isolate
a weak-lensing signal from the data. Estimates for the sensitivity of a survey of a
given area, surface density, and mean intrinsic source ellipticity are presented. We
then apply our results to the FIRST radio-source survey. We predict an rms ellipticity
of roughly 0.011 in 1◦ × 1◦ pixels and 0.018 in 20′ × 20′ pixels if the power spectrum
is normalized to σ8Ω

0.53 = 0.6, as indicated by the cluster abundance. The signal is
significantly larger in some models if the power spectrum is normalized instead to the
COBE anisotropy. The uncertainty in the predictions from imprecise knowledge of the
FIRST redshift distribution is about 25% in the rms ellipticity. We show that FIRST

should be able to make a statistically significant detection of a weak-lensing signal for
cluster-abundance–normalized power spectra.
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1 INTRODUCTION

It has been proposed that the effects of weak lensing on dis-
tant sources could shed light on the large-scale distribution
of mass in the Universe (Gunn 1967; Miralda-Escudé 1991;
Blandford et al. 1991; Kaiser 1992; Bartelmann & Schneider
1992; Kaiser 1996; Villumsen 1996; Stebbins 1997; Jain &
Seljak 1997). Mass inhomogeneities along the line of sight
to distant sources will induce distortions in the images of
these sources; thus, correlations of the ellipticities of distant
sources provides a probe of the correlation of mass along
the line of sight. In this way, the power spectrum for the
mass (rather than light) distribution in the Universe can be
probed.

This technique requires (i) a sample of sources which are
distant, so there is a large line of sight over which the lensing
signal can accrue; (ii) good angular resolution, so that the
ellipticities of sources can be determined; and (iii) a large
enough sample of sources so that the noise provided by the
intrinsic ellipticities of sources can be overcome. For exam-
ple, the VLA FIRST radio survey meets all of these criteria
(Becker et al. 1995; White et al. 1997). Upon completion, the

survey will cover 10,000 square degrees of the North Galactic
cap. There are ∼ 40 sources per square degree with resolved
structure on scales from 2 − 30′′ at the survey resolution
of 5′′, and the mean redshift of these sources is of order
unity. Several systematic effects can produce spurious ellip-
ticity correlations in FIRST, and therefore be mistaken for
a weak-lensing signal. However, the most serious systematic
effects are understood and can be corrected for (Refregier &
Brown 1997; Refregier et al. 1997).

When looking for the effects of weak lensing on galaxies
behind a cluster, one requires tens of thousands of galaxies
per square arcminute to overcome the Poisson noise from in-
trinsic galactic ellipticities and thereby map the shear field.
With this in mind, it may at first seem hopeless to detect the
effects of weak lensing in a sparsely-sampled survey such as
FIRST with < 100 resolved sources per square degree. How-
ever, for weak lensing from large-scale structure, we are in-
terested in the correlation of ellipticities of pairs of sources
with some fixed angular separation; we do not necessarily
need to map the shear field. For this, the relevant quan-
tity is not the density of sources, but the total number of
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2 Kamionkowski et al.

pairs of sources in the survey with some fixed angular sep-
aration. In other words, the sensitivity to the mean-square
ellipticity averaged over regions of some fixed size on the sky
is improved with a large area [cf., the discussion of sparse
sampling in Kaiser (1996)].

In this paper, we review the theory of ellipticity correla-
tions from weak gravitational lensing. We discuss statistical
techniques which can be used to isolate a signal in the data.
We also estimate the amplitude which may be detectable
with a survey which covers a given fraction of the sky with
a given number of resolved sources per square degree and
a given mean intrinsic source ellipticity. We then calculate
the predicted weak-lensing correlations in the FIRST radio
survey for the canonical cold-dark-matter model as well as
for several viable variants. We discuss the uncertainties in
the predictions which arise from imprecise knowledge of the
redshift distribution of FIRST sources, and consider the de-
tectability of the signal. Refregier & Brown (1997) show how
spatial noise correlation, one of the most serious systematic
effects for FIRST, affects weak-lensing measurements and
can be corrected for. A subsequent paper will present the
results of the search for weak lensing in FIRST (Refregier
et al. 1997).

2 ELLIPTICITY CORRELATIONS FROM

WEAK LENSING

2.1 Description of the Shear Field

Weak lensing will induce a stretching of images on the sky
at position ~θ = (θx, θy) described by the shear field, a sym-
metric, trace-free 2 × 2 tensor field:

γαβ(~θ) =

(
ǫ+(~θ) ǫ×(~θ)

ǫ×(~θ) −ǫ+(~θ)

)
. (1)

Here, ǫ+ is the stretching in the θ̂x− θ̂y directions, and ǫ× is
the stretching along axes rotated by 45◦. Alternatively, the
shear field can be written as a shear “vector,”

γα = (ǫ+, ǫ×) = γ(cos 2α, sin 2α), (2)

although this ordered pair does not transform as a vector.
The deformation is also sometimes written as a complex
ellipticity p; the two components of the polarization “vector”
are the real and imaginary parts of the complex ellipticity,

p =
(a2 − b2)

(a2 + b2)
e2iα = |p|e2iα

= (ǫ2+ + ǫ2×)1/2e2iα = ǫ+ + iǫ×, (3)

where a and b are the principle moments. We see that γ =
|p| = (ǫ2+ +ǫ2×)1/2 = (a2−b2)/(a2 +b2) and tan 2α = ǫ×/ǫ+.

As pointed out by Stebbins (1997), the shear tensor field

γαβ(~θ), can be decomposed into a “gradient” or curl-free
component (what Stebbins calls the scalar part) and a “curl”
(or pseudoscalar) component, just as a two-dimensional vec-
tor field can be decomposed into curl and curl-free parts. In
other words, the shear tensor can be written in terms of two
scalar functions γg(~θ) and γc(~θ),

∇2γg = ∂α∂βγαβ, ∇2γc = ǫαγ∂β∂γγαβ, (4)

where ǫαβ is the antisymmetric tensor. Specification of γg(~θ)

and γc(~θ) is equivalent to specification of ǫ+(~θ) and ǫ×(~θ).

The quantities γg and γc are the gradient and curl compo-
nents of the ellipticity field.

Density perturbations (mass inhomogeneities) produce
only scalar perturbations to the spacetime metric, so they
have no handedness and can therefore produce no curl.
Gravitational waves have a handedness and may induce a
nonzero γc. However, the weak-lensing signal from gravita-
tional waves is expected to be extremely small (Stebbins
1997). Vector modes could also produce a curl, but, like
tensor modes, they are negligible. Therefore, we expect that
γc = 0, and only γg should be nonzero. This allows one to
isolate the effect of weak lensing and to check for non-lensing
ellipticity correlations.

Throughout, we approximate the region of sky surveyed
as a flat surface. At first this might seem inappropriate since
the FIRST survey covers a good fraction of the sky. However,
weak-lensing ellipticity correlations should be most signifi-
cant only at smaller angular separations, so the inaccuracies
which arise from approximating the sky as a flat surface
should be small. Furthermore, we are primarily interested
here in establishing the existence of an ellipticity correla-
tion. With future more sensitive data, it will be necessary
to account for the curvature of the sky (Stebbins 1997).

Given the shear tensor γαβ(θ), the functions γg and γc

can be constructed only with a Fourier transform. Writing

γαβ(~θ) =

∫
d2~κ

(2π)2
γ̃αβ(~κ) e−i~κ·~θ,

γ̃αβ(~κ) =

∫
d2~θ γαβ(~θ) ei~κ·~θ , (5)

where the tilde denotes the Fourier transform (and similarly
for the other quantities), we get

γ̃g(~κ) =
(κ2

x − κ2
y)ǫ̃+(~κ) + 2κxκy ǫ̃×(~κ)

κ2
x + κ2

y
, (6)

γ̃c(~κ) =
2κxκy ǫ̃+(~κ) − (κ2

x − κ2
y)ǫ̃×(~κ)

κ2
x + κ2

y
. (7)

The functions γg(~θ) and γc(~θ) can then be recovered through
the inverse Fourier transformation. Since γαβ is a real tensor,
γ̃∗

αβ(~κ) = γ̃αβ(−~κ), and similarly for γ̃g and γ̃c.

2.2 Power Spectra

Statistical homogeneity and isotropy guarantee that the two
sets of Fourier coefficients, γ̃g and γ̃c, have expectation val-
ues,
〈
γ̃∗

g (~κ)γ̃g(~κ
′)
〉

= (2π)2δ(~κ − ~κ′)Pgg(κ),
〈
γ̃∗

c (~κ)γ̃c(~κ
′)
〉

= (2π)2δ(~κ − ~κ′)Pcc(κ),
〈
γ∗

g (~κ)γc(~κ
′)
〉

= (2π)2δ(~κ − ~κ′)Pgc(κ). (8)

The power spectrum Pgg(κ) is precisely Kaiser’s (1992) el-
lipticity power spectrum Pǫ(κ). The second power spectrum
Pcc(κ) will be effectively zero because weak lensing from
gravitational waves is extremely small. The third, Pgc(κ),
must be identically zero since it is parity violating—that is,
this power spectrum changes sign under the change of co-
ordinates x̂ → −x̂. Since these latter two power spectra are
zero, they can be used to look for non-lensing artifacts in
the data.
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Theory and Statistics of Weak Lensing from Large-Scale Mass Inhomogeneities 3

The mean-square gradient component of the ellipticity
is

〈
γ2

g

〉
=

∫
d2~κ

(2π)2
Pgg(κ). (9)

Since the mean-square curl component of the ellipticity is
zero,

〈
γ2

g

〉
is also the mean-square total ellipticity.

Realistically, the mean-square ellipticity cannot be mea-
sured. The actual measured quantity is the mean-square el-
lipticity smoothed with some window function. Suppose we
estimate the shear field at position θ by averaging over all
ellipticities, e.g., in a square θp × θp pixel centered at θ. In
that case, we are probing a smoothed shear field,

ǫs
+(~θ) =

∫
d2~α W (~α) ǫ+(~θ + ~α), (10)

where W (~α) is the window function (e.g., for square pix-
els, constant inside the pixel, zero outside, and normalized
to unity), and similarly for ǫs

×. All prior results for the un-
smoothed field are generalized to the smoothed field as long

as we replace ǫ̃+(~κ) → ǫ̃s
+(~κ) = ǫ̃+(~κ)W̃ (~κ), where W̃ (~κ) is

the Fourier transform of W (~θ). The mean-square smoothed
ellipticity is then

〈
(γs

g)2
〉

=

∫
d2~κ

(2π)2
Pgg(κ) |W̃ (~κ)|2. (11)

In the following, we also use the shorthand P s
gg(κ) ≡

Pgg(κ)|W̃ (~κ)|2 for the smoothed power spectrum. Although
the mean-square ellipticity gives a simple indication of the
magnitude of the weak-lensing signal, one can obtain a much
more sensitive probe of a signal by taking advantage of the
information provided by the complete power spectra (or
equivalently, correlation functions), as discussed further be-
low.

2.3 Correlation Functions

There are three independent two-point ellipticity correla-
tion functions that can be constructed in configuration space
from the three power spectra. Since the components (ǫ+ and
ǫ×) of the shear tensor are defined with respect to some set
of axes on the sky and transform under rotations, correlation
functions of these quantities will depend on the relative ori-
entation of the two points being correlated as well as the sep-
aration. However, correlation functions which are indepen-
dent of the coordinate system can be constructed (Stebbins
1997) in analogy with those needed for CMB polarization
correlations (Kamionkowski et al. 1997). To do so, we de-
fine correlation functions of ellipticities ǫr

+ and ǫr
× measured

with respect to axes which are parallel and perpendicular
to the line connecting the two points being correlated. To
be explicit, suppose the first point is ~θ1 = (θ1x, θ1y) and the

second is ~θ2 = (θ2x, θ2y). Then we must rotate the axes by
an angle φ = arctan[(θ2y − θ1y)/(θ2x − θ1x)] to align the ro-
tated x axis with the line connecting the two points. Under
this rotation, we get

ǫr
+ = ǫ+ cos 2φ + ǫ× sin 2φ, (12)

ǫr
× = −ǫ+ sin 2φ + ǫ× cos 2φ, (13)

at both points. The 2φ enters since the ellipticity is un-
changed under a rotation by 90◦. We can then construct

three correlation functions, 〈ǫr
+ǫr

+〉, 〈ǫr
×ǫr

×〉, 〈ǫr
+ǫr

×〉, from the
rotated components. Although ǫr

+ is invariant under reflec-
tion along the line connecting the two points being corre-
lated, ǫr

× changes sign. Therefore, parity invariance demands
that 〈ǫr

+ǫr
×〉 = 0. Statistically significant deviations from

zero can be due only to systematic errors in the data.
By setting φ = 0 in Kaiser’s Eq. (2.3.1), we iden-

tify
〈
ǫr
+(~θ0)ǫ

r
+(~θ0 + ~θ)

〉
= C1(θ) and

〈
ǫr
×(~θ0)ǫ

r
×(~θ0 + ~θ)

〉
=

C2(θ). We also verify that
〈
ǫr
+(~θ0)ǫ

r
×(~θ0 + ~θ)

〉
= 0. In anal-

ogy with correlation functions of Stokes parameters of the
cosmic microwave background (Kamionkowski et al. 1997),
we can write the correlation functions (for any φ) in terms
of the power spectra as

C1(θ) + C2(θ) =

∫
∞

0

κ dκ

2π
[Pgg(κ) + Pcc(κ)]J0(κθ) (14)

C1(θ) − C2(θ) =

∫
∞

0

κ dκ

2π
[Pgg(κ) − Pcc(κ)]J4(κθ). (15)

In terms of correlation functions of rotated and unrotated
ellipticities, and in terms of the complex ellipticity p,

C1(θ) + C2(θ) =
〈
ǫr
+(~θ0)ǫ

r
+(~θ0 + ~θ)

〉
+
〈
ǫr
×(~θ0)ǫ

r
×(~θ0 + ~θ)

〉

=
〈
ǫ+(~θ0)ǫ+(~θ0 + ~θ)

〉
+
〈
ǫ×(~θ0)ǫ×(~θ0 + ~θ)

〉

= Re[p∗(~θ0)p(~θ0 + ~θ)], (16)

C1(θ) − C2(θ) =
〈
ǫr
+(~θ0)ǫ

r
+(~θ0 + ~θ)

〉
−
〈
ǫr
×(~θ0)ǫ

r
×(~θ0 + ~θ)

〉

= cos 4φ

[
〈
ǫ+(~θ0)ǫ+(~θ0 + ~θ)

〉

−
〈
ǫ×(~θ0)ǫ×(~θ0 + ~θ)

〉
]

+sin 4φ

[
〈
ǫ×(~θ0)ǫ+(~θ0 + ~θ)

〉

+
〈
ǫ+(~θ0)ǫ×(~θ0 + ~θ)

〉
]

= Re[p(~θ0)p(~θ0 + ~θ)] cos 4φ

+Im[p(~θ0)p(~θ0 + ~θ)] sin 4φ, (17)

where ~θ = {θ cos φ, θ sin φ}. There is also the third linearly
independent correlation function,

Ccross(θ) =
〈
ǫr
+(~θ0)ǫ

r
×(~θ0 + ~θ)

〉
+
〈
ǫr
×(~θ0)ǫ

r
+(~θ0 + ~θ)

〉

= − sin 4φ
[〈

ǫ+(~θ0)ǫ+(~θ0 + ~θ)
〉
−
〈
ǫ×(~θ0)ǫ×(~θ0 + ~θ)

〉]

+cos 4φ
[〈

ǫ×(~θ0)ǫ+(~θ0 + ~θ)
〉

+
〈
ǫ+(~θ0)ǫ×(~θ0 + ~θ)

〉]

= −Re[p(~θ0)p(~θ0 + ~θ)] sin 4φ

+Im[p(~θ0)p(~θ0 + ~θ)] cos 4φ, (18)

and parity conservation demands Ccross(θ) = 0. Note that
when written in terms of the unrotated ellipticities or the
complex ellipticity, the sum C1(θ)+C2(θ) is independent of
φ. However, when written in terms of the unrotated elliptic-
ities or complex ellipticity, the difference C1(θ)−C2(θ) and
Ccross(θ) does depend explicitly on φ, the relative orientation
of the two points being correlated.

The power spectra can be written in terms of the cor-
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4 Kamionkowski et al.

relation functions as

Pgg(κ) =
π

2

∫
θdθ

{
[C1(θ) + C2(θ)]J0(κθ)

+[C1(θ) − C2(θ)]J4(κθ)

}

Pcc(κ) =
π

2

∫
θdθ

{
[C1(θ) + C2(θ)]J0(κθ)

−[C1(θ) − C2(θ)]J4(κθ)

}
. (19)

Again, if the second of these is nonzero, it can only be due to
non-lensing effects, so construction of this correlation func-
tion provides a powerful probe for the presence of nonlensing
artifacts in the data.

Of course, correlation functions Cs(θ) for the smoothed
ellipticities can be obtained by replacing ellipticities and
power spectra by the smoothed ellipticities and power spec-
tra in all the equations above.

3 STATISTICAL ESTIMATORS

The effects of weak lensing can be uncovered through the
measured correlation functions, power spectra, mean-square
ellipticities averaged over some given pixel size, or a full
maximum-likelihood fit to the data.

The Fourier modes of the shear field due to weak lens-
ing are statistically independent. Furthermore, if the noise
map is orientation independent, then the Fourier modes of
the noise will also be statistically independent. Even if we
use only the simplest (although not necessarily optimal) es-
timator for the power spectrum, the mean-square ellipticity,
it is better to work in Fourier space. The predicted weak-
lensing mean-square ellipticity is due entirely to the gradient
component, but randomly oriented intrinsic source elliptici-
ties should contribute to the mean-square ellipticity equally
through the gradient and curl component. The signal-to-
noise ratio will therefore be improved with a Fourier trans-
form which allows us to isolate the gradient and curl com-
ponents.

3.1 Discrete Fourier Transforms and Statistical

Noise

We restrict ourselves to a survey which covers a rectan-
gular region of the sky. The analysis can be extended to
irregularly-shaped regions of the sky, but only with signif-
icant complications. [Simple estimates of the effects of an
irregularly-shaped survey which are used for the power spec-
trum of angular clustering (Baugh & Efsthathiou 1994) are
not easily generalized to weak-lensing power spectra.] We
first construct pixels of size θp × θp on the sky. This leaves
us with Npix = Nx × Ny pixels, where Nx = θx/θp and
Ny = θy/θp and θx and θy are the dimensions of the map.

The pixels labeled by (i, j) are centered at ~θij = (i, j)θp, and
i = 0, 1, ..., Nx − 1 and j = 0, 1, ..., Ny − 1.

The ellipticities, ǫobs
+,ij and ǫobs

×,ij , measured in pixel (i, j)

are the sum of a weak-lensing signal and noise which arises
from intrinsic source ellipticities and measurement error,

ǫobs
+,ij = ǫs

+,ij + ǫn
+,ij , ǫobs

×,ij = ǫs
×,ij + ǫn

×,ij . (20)

We can then use an FFT to determine the Npix Fourier
coefficients of the survey,

ǫ̃obs
+ (~κ) =

∑

ij

ǫobs
+,ije

i~κ·~θij , ǫ̃obs
× (~κ) =

∑

ij

ǫobs
×,ije

i~κ·~θij , (21)

for ~κ = (2π/θp)(n/Nx, m/Ny), and n = 0, 1, ..., Nx − 1 and
m = 0, 1, ..., Ny − 1.

If the noise terms are all statistically independent
with variances σ2

ǫ [i.e., they satisfy
〈
ǫn
+,ijǫ

n
+,kl

〉
= σ2

ǫ δikδjl,〈
ǫn
×,ijǫ

n
×,kl

〉
= σ2

ǫ δikδjl, and
〈
ǫn
+,ijǫ

n
×,kl

〉
= 0], then estima-

tors for the mean-square ellipticities are given by

̂(γs
g)2 =

(
1

N2
pix

∑

~κ

|γobs
g (~κ)|2

)
− σ2

ǫ , (22)

̂(γs
c )2 =

(
1

N2
pix

∑

~κ

|γobs
c (~κ)|2

)
− σ2

ǫ , (23)

̂(γs
g)∗γs

c =

(
1

N2
pix

∑

~κ

[γobs
g (~κ)]∗γobs

c (~κ)

)
− P n

gc(κ). (24)

These are estimators for variances of a distribution measured
with a finite number of pixels. Therefore, there will be some
cosmic variance as well as some pixel-noise variance with
which these estimators will recover their expectation values.
These variances are
〈[
̂(γs

g)2 −
〈
(γs

g)2
〉]2〉

=
2

Npix

[〈
(γs

g)2
〉

+ σ2
ǫ

]2
, (25)

〈[
̂(γs

c )2 −
〈
(γs

c )2
〉]2〉

=
2

Npix

[〈
(γs

c )2
〉

+ σ2
ǫ

]2
, (26)

〈[
̂(γs
g)∗γc

g −
〈
(γs

g)∗γs
c

〉]2〉
=

1

Npix

[〈
(γs

g)2
〉

+ σ2
ǫ

]

×
[〈

(γs
c )2
〉

+ σ2
ǫ

]
. (27)

These results may be obtained in analogy with the deriva-
tion for cosmic and pixel-noise variances for a temperature-
polarization map of the cosmic microwave background
(Knox 1995).

Inserting the null hypothesis of no signal,
〈
(γs

g)2
〉

=
0, into Eq. (25) gives us the statistical limit to the weak-
lensing amplitude of this quantity to which we are sensitive.
Explicitly, we can be assured a 3σ detection of (γs

g)2 only if

it exceeds 3σ2
ǫ

√
2/Npix.

If the density of resolved sources on the sky is n̄ (in units
of deg−2) and the mean intrinsic ellipticity of the sources
is ǭ (the mean intrinsic value of |p|), then σ2

ǫ = ǭ2/(n̄θ2
p).

Therefore, if the area of the survey is A, then the survey
will be sensitive (at 1σ) to a mean-square ellipticity,

σ〈(γs
g)2〉 = (0.0075)2 (A/10, 000 deg2)−1/2

×(ǭ/0.4)2(n̄/40 deg−2)−1(θp/deg)−1, (28)

for pixels of area θ2
p. Since the signal is the mean-square el-

lipticity (rather than the rms ellipticity), an rms ellipticity

c© 0000 RAS, MNRAS 000, 000–000



Theory and Statistics of Weak Lensing from Large-Scale Mass Inhomogeneities 5

>∼
√

3(0.0075) ≃ 0.013 in 1◦ square pixels should be de-
tectable at 3σ with the survey parameters assumed here.
The central values above were chosen to be close to those
expected for resolved sources in the completed FIRST sur-
vey.

3.2 Likelihood Analysis

Although the mean-square ellipticity per pixel provides a
simple estimate of the sensitivity of a given survey to a
signal, it is not the optimal statistic for detecting a weak-
lensing signal. The sensitivity of a survey to a weak-lensing
signal can be improved significantly with a maximum-
likelihood analysis which compares the complete power spec-
trum (rather than just the mean-square ellipticity) with the
entire survey.

Suppose that in a survey with Npix pixels we
construct a 2Npix-dimensional data vector, Dobs

α =
{ǫobs

+,1, ǫ
obs
×,1, ǫ

obs
+,2, ǫ

obs
×,2, ..., ǫ

obs
+,Npix

, ǫobs
×,Npix

}, from the 2Npix

measured ellipticities ǫobs
+,ij and ǫobs

+,ij , and each observed
value is due to signal and noise, Dobs

α = Ds
α + Dn

α. Sup-
pose further that we are testing a Gaussian theory which
predicts expectation values

〈
Ds

αDs
β

〉
= Cs

αβ (where the the-
ory correlation matrix is given by the unrotated correlation
functions discussed in section 2.3) with a map which has
Gaussian noise with a correlation matrix

〈
Dn

αDn
β

〉
= Cn

αβ.
The likelihood of this theory given the data is

L ∝ exp{Dobs
α [(Cs + Cn)−1]αβDobs

β }. (29)

For example, if the noise is due entirely to intrinsic source
ellipticities, then the noise in each pixel is uncorrelated and
the noise between + and × ellipticities is also uncorrelated,
so the noise correlation matrix becomes diagonal with en-
tries equal to the variance in each ellipticity, Cn

αβ
= σ2

ǫ δαβ.
In general, however, the noise correlation matrix will be non-
diagonal (Refregier & Brown 1997), and the theory matrix
is also nondiagonal. Therefore, for a 10,000-deg2 survey with
20′ × 20′ pixels, the data vector will have 180,000 entries,
and evaluation of the likelihood would require inversion of a
180, 000 × 180, 000 matrix!

Progress in evaluating the likelihood with good accu-
racy can be made by working in the Fourier domain in-
stead. In this case, we write the data as a 2Npix-dimensional
vector with the Npix measured Fourier components γ̃obs

g (~κ)
and γ̃obs

c (κ) as components. Statistical isotropy and ho-
mogeneity guarantee that these have expectation values〈
γ̃s

g(~κ)γ̃s
g(~κ′)

〉
= P s

gg(κ)δ~κ~κ′ ,
〈
γ̃s

g(~κ)γ̃s
c (~κ′)

〉
= 0, and

〈γ̃s
c (~κ)γ̃s

c (~κ′)〉 = 0. In other words, the covariance of the
Fourier components is diagonal, and since all the c compo-
nents are expected to be zero, we only need to deal with
a Npix × Npix (rather than 2Npix × 2Npix) covariance ma-
trix. Unfortunately, the covariance of the noise in Fourier
space will not always be diagonal, unless the noise correla-
tion functions depend only on the separation between two
points and not their relative orientation. This will not neces-
sarily be the case. For example, the noise in interferometric
images is generally spatially correlated and has preferred
directions (visible as “stripes” in the noise). This produces
spurious ellipticity correlations which depend on the orien-
tation of the source-separation vector (Refregier & Brown
1997). Therefore, the error obtained by assuming the co-

variance in Fourier space to be diagonal will underestimate
the true error. By carrying out a full likelihood analysis on
a small patch of the survey and comparing it with the re-
sults of the restricted analysis (i.e., that which assumes the
Fourier components are all statistically independent) on that
same patch, one can determine the degree to which the re-
stricted analysis underestimates the error.

To proceed, we must make the approximation that
the covariance of the noise is diagonal in the Fourier do-
main. Then the power spectrum P n

gg(κ) of the noise can be
obtained from the noise correlation functions, Cn

1 (θ) and
Cn

2 (θ), which are obtained by averaging over all orienta-
tions φ. With this approximation, both the noise and the-
ory covariance matrices are diagonal in the Fourier domain,
and evaluation of the likelihood reduces to evaluation of the
usual χ2. Therefore, if our model consists of a smoothed
power spectrum AP s

gg(κ) and we are trying to fit for the
amplitude A, then each of the Npix measured Fourier com-
ponents ~κ provides an independent estimator,

A~κ =
|γ̃obs

g (~κ)|2 − P n
gg(κ)

P s
gg(κ)

, (30)

for A, with a variance

σ2
A~κ

=
〈
(A~κ − 〈A~κ〉)2

〉
=

2[AP s
gg(κ) + P n

gg(κ)]2

[P s
gg(κ)]2

. (31)

Therefore, an estimator for A for the entire survey is

Â =

∑
~κ
A~κ/σ2

A~κ

1/σ2
A

, (32)

and the variance to this estimator is σA given by

1

σ2
A

=
∑

~κ

1

σ2
A~κ

. (33)

To determine the smallest value of A which could be
distinguished from the noise, we insert the null hypothesis
A = 0 into Eq. (33). To illustrate, suppose that the noise in
each component of the ellipticity was Gaussian with variance
σ2

ǫ and independent of each other component, as assumed
above. In this case, P n

gg(κ) = σ2
ǫ . Therefore,

1

σ2
A

=
1

2σ4
ǫ

∑

~κ

[P s
gg(κ)]2 ≃ N2

pix

2σ4
ǫ

∫
d2~κ

(2π)2
[P s

gg(~κ)]2, (34)

or in other words,

σA

A =

√
2σ2

ǫ

Npix
I−1/2

σ =

√
2ǭ2

n̄A
I−1/2

σ , (35)

where

Iσ ≡ A2

∫
d2~κ

(2π)2
[P s

gg(~κ)]2, (36)

and we have used σ2
ǫ = ǭ2/(n̄θ2

p) and θ2
p = A/Npix. Eq. (35)

shows how the signal-to-noise scales with the mean intrinsic
source ellipticity ǭ, usable density of sources n̄ and the survey
area A.

4 PREDICTIONS FOR THE FIRST SURVEY

4.1 Preliminaries

We will restrict our analysis to a flat Universe (Ω0+ΩΛ = 1),
but will allow for a nonzero cosmological constant ΩΛ. The
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scale factor of the Universe, a(t), satisfies the Friedmann
equations,

ȧ

a
= H0E(z) ≡ H0

√
Ω0(1 + z)3 + ΩΛ, (37)

where H0 = 100 h kmsec−1 Mpc−1 is the Hubble constant,
Ω0 is the current nonrelativistic-matter density in units of
the critical density, ΩΛ is the current contribution of the
cosmological constant to closure density, and the dot denotes
derivative with respect to time.

We choose the scale factor such that a0H0 = 2. If we
are located at the origin, ~w = 0, then an object at redshift
z is at a comoving distance,

w(z) =
1

2

∫ z

0

dz′

E(z′)
, (38)

and the comoving distance to the horizon (or the conformal
time today) is

η0 =
1

2

∫
∞

0

dz′

E(z′)
. (39)

4.2 Weak-Lensing Power Spectrum

Given a power spectrum P (k, z) for the mass distribution,
the power spectrum for the gravitational potential is

Pφ(k, z) = k−4
[
3

2
(a0H0)

2Ω0(1 + z)
]2

P (k, z). (40)

In linear theory, the time evolution of the power spectrum
is given by

P (k, z) = P (k, z = 0)[D(z)/D(z = 0)]2, (41)

where

D(z) =
5Ω0 E(z)

2

∫
∞

z

1 + z′

[E(z′)]3
dz′, (42)

is the linear-theory growth factor (see, e.g., Peebles 1993).
The weak-lensing power spectrum is (Kaiser 1992)

Pgg(κ) = 4

∫
dz

dw

dz

[
g(z)

w(z)

]2 [
κ

w(z)

]4

Pφ(κ/w, z), (43)

where g(z) is given in terms of the survey redshift distribu-
tion, dN/dz, by

g(z)

w(z)
=

∫
∞

z

dz′ 1

N

dN

dz′

[
1 − w(z)

w(z′)

]
. (44)

Inserting Eqs. (40)–(42) into Eq. (43), we find

Pgg(κ) =
1

κ

∫
∞

κ/η0

Iκ(k)P (k, z = 0) dk, (45)

where

Iκ(k) = 144Ω2
0 [g(w = κ/k)]2[1 + z(w = κ/k)]2

×[D(w = κ/k)/D0]
2. (46)

The mean-square variance in a cell with window function

W̃ (κ) is

〈
(γs

g)2
〉

=

∫
dk P (k, 0) G(k), (47)

where

G(k) =

∫ kη0

0

dκ

2π
|W̃ (κ)|2 Iκ(k). (48)

4.3 Model for the Spatial Density Power

Spectrum

For the power spectrum, we use

P (k) =
2π2

8
δ2

H(k/2)nT 2(kp Mpc/hΓ), (49)

where T (q) is the usual CDM transfer function, kp = kH0/2
is the physical wave number, and Γ ≃ Ω0h is given more
accurately in terms of Ω0h and the baryon fraction Ωb by
Eqs. (D-28) and (E-12) in Hu & Sugiyama (1996). For the
transfer function, we use (Bardeen et al. 1986),

T (q) =
ln(1 + 2.34q)/(2.34q)

[1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]1/4
. (50)

If the power spectrum is normalized to COBE, the am-
plitude δH is (Bunn & White 1997)

δH(n, Ω0) = 1.94 × 10−5 Ω−0.785−0.05 lnΩ0
0

× exp[a(n − 1) + b(n − 1)2]. (51)

If primordial density perturbations are due to inflation,
then there will also be a stochastic gravity-wave background
which contributes to the COBE anisotropy with an ampli-
tude dependent on the spectral index n. In this case, a = 1
and b = 1.97. If we make no such assumption and suppose
that the stochastic gravity-wave background is negligible,
then a = −0.95 and b = −0.169. If we are uncertain of the
gravity-wave contribution to COBE, then the COBE nor-
malization above (with no gravity-wave background) will
provide an upper limit to the true amplitude of the power
spectrum.

Alternatively, the power spectrum may be normalized
at small distance scales through the cluster abundance which
fixes σ8, the variance in the mass enclosed in spheres of
radius 8 h−1 Mpc, to σ8 ≃ (0.6±0.1)Ω−0.53

0 (Viana & Liddle
1996). In terms of the power spectrum,

σ2
8 =

1

2π2

∫
k2 dk P (k)

[
3j1(kpR)

kpR

]2

, (52)

where R = 8 h−1 Mpc, and j1(x) is a spherical Bessel func-
tion. Since we are using a0 6= 1, kp (rather than k) enters
into the argument of the spherical Bessel function.

4.4 Results for the FIRST Survey

Fig. 1 shows the weight function g2(z) that enters into the
calculation of the weak-lensing signal for the four FIRST

redshift distributions considered by Cress & Kamionkowski
(1997) and shown in Fig. 1 therein. Our best estimate for
the FIRST redshift distribution is “DP7 (med-z)” derived
from a radio-source luminosity function due to Dunlop and
Peacock (1990), but we also include two other plausible es-
timates from these authors, “DP7 (high-z)” and “DP1,”
as well as a redshift distribution derived from a luminos-
ity function due to Condon (1984). For comparison, we
also show the weight functions obtained from assuming all
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Figure 1. Redshift weight functions g2(z) for the four FIRST

redshift distributions considered in Cress & Kamionkowski

(1997). Also shown are g2(z) that would be obtained if all the
sources were at redshift zs = 1 or zs = 2.

sources to be at a redshift of zs = 1 or zs = 2. Below, we cal-
culate the predicted signals with all four FIRST redshift dis-
tributions to assess the uncertainty in the predictions from
imprecise knowledge of the redshift distribution.

Fig. 2 shows the spatial power spectra of the mass dis-
tribution for the four models listed in Table 1. The light
dashed curves are the (unnormalized) window functions
G(k) needed to calculate the mean-square ellipticity for
1◦ × 1◦ square pixels and 6′ × 6′ square pixels (obtained
with our best estimate, DP7 (med-z), for the FIRST red-
shift distribution). The light dotted curve is the window
function needed to calculate σ8. These window functions
illustrate that weak lensing probes power over a wide range
of distance scales, and that the ellipticity in 1◦ × 1◦ pixels
probes the power spectrum on larger scales than σ8. Here
we used the DP7 (med-z) redshift distribution. The weak-
lensing window functions would be shifted very slightly to
larger scales if we had used the high-z DP7 redshift distri-
bution and to slightly smaller scales if we had used the DP1
or Condon redshift distributions. Figs. 3 and 4 show the
(unsmoothed) weak-lensing power spectra and correlation
functions for the four (COBE-normalized) models listed in
Table 1 (again, using the med-z DP7 redshift distribution).

Table 1 lists the predicted rms gradient component of
the ellipticity for several flat COBE-normalized and cluster-
abundance–normalized cold-dark-matter models with and
without a cosmological constant for 6′ × 6′ pixels, 30′ × 30′

pixels, and 1◦ × 1◦ pixels calculated with Eq. (47). We used
the med-z DP7 redshift distribution for these calculations.
For the window function, we use

W̃ (κ) = 2J1(x)/x with x ≡ κθp/
√

π, (53)

Figure 2. Three-dimensional COBE-normalized power spectra
P (k) for the four models listed in Table 1. Models 1–4 are repre-

sented by solid, dotted, dash, and dot-dash curves, respectively.
Also shown (the light dashed curves) are the window functions
G(k) needed for calculation of the mean-square ellipticity at
θp = 1◦ and θp = 6′, and the window function (light dotted
curve) needed for the calculation of σ8.

and θp is the pixel size.⋆ In all cases, the rms ellipticity

scales with the pixel size roughly as
〈
(γs

g)2
〉1/2 ∝ θ−β

p with

β = 0.3−0.4. We also list σ8Ω
0.53
0 where σ8 is that obtained

when the power spectrum is normalized to COBE. Note that
if the power spectrum is normalized to σ8Ω

0.53
0 = 0.6, as in-

dicated by the cluster abundance, then the rms ellipticities
are 0.018 and 0.012 for θp = 20′ and 1◦, independent of the
model (except for the Ω0 = 1, h = 0.5 model which dif-
fers negligibly). Weak lensing is due to perturbations in the
gravitational potential (rather than the mass distribution),
and the amplitude of gravitational-potential perturbations
is fixed by the cluster abundance. This is why the weak-
lensing power spectrum and correlations functions shown in
Figs. 3 and 4 for the COBE-normalized Model 1 are so much
higher than the others: this model predicts a value of σ8Ω

0.53
0

significantly larger than the others.
We have checked that our calculations agree reasonably

well with those of Jain & Seljak (1997) for the models and
redshift distributions they consider. Their work illustrates
that nonlinear effects (which we have not taken into account)
are important only for θp <∼ 10′. Corrections to the pre-
dicted signal due to nonlinear evolution of the power spec-
trum should increase the weak-lensing signal for θp >∼ 10′,
but only by a relatively small amount.

Table 2 lists the predictions for the COBE-normalized
Ω0 = 1, h = 0.5, and n = 1 model for the four FIRST

⋆ Actually, this is the window function for circular pixels of the
same area. The results should be similar if we use the window
function for square pixels.
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8 Kamionkowski et al.

Table 1. Predicted RMS ellipticities,
〈
(γs

g)2
〉1/2

of FIRST radio sources from weak lensing for θp = 6′, 20′, and 1◦ for both COBE-
normalized and cluster-abundance–normalized power spectra. We also list the values of σ8 for COBE-normalized models.

(100
〈
(γs

g)2
〉1/2

)

COBE-normalized cluster normalized

Ω h n Ωbh
2 σ8 σ8Ω0.53

0 6′ 20′ 1◦ 6′ 20′ 1◦

1 0.5 1 0.0125 1.21 1.21 5.2 3.7 2.2 2.6 1.8 1.1

1 0.5 0.8 0.025 0.71 0.71 2.8 2.1 1.4 2.4 1.8 1.2

0.4 0.65 1 0.015 1.07 0.65 2.6 1.9 1.3 2.4 1.8 1.2

1 0.35 1 0.015 0.74 0.74 2.9 2.2 1.5 2.4 1.8 1.2

Table 2. Predicted RMS ellipticities (in percent) of radio sources from weak lensing for the COBE-normalized Model 1 for 06′ × 6′ and
1◦ × 1◦ pixels.

Redshift Distribution 100
〈
(γs

g)2
〉1/2

(θp = 6′) 100
〈
(γs

g)2
〉1/2

(θp = 1◦)

DP7 (med-z) 5.2 2.2

DP7 (high-z) 5.6 2.3

DP1 4.0 1.8

Condon 4.2 1.9

Figure 3. Weak-lensing power spectra Pgg(κ) for the four
(COBE-normalized) models listed in Table 1.

redshift distributions. If the high-z DP7 redshift distribution
is adopted, rather than the med-z DP7 distribution, then
the predicted weak-lensing signal is increased by about 6%.
But if the true redshift distribution were more accurately
represented by the DP1 or Condon distribution, the signal
would be smaller by about 20–25%. Note that the fractional

Figure 4. Weak-lensing correlation functions C1(θ) and C2(θ)
for the four (COBE-normalized) models listed in Table 1.

uncertainty in the weak-lensing signal is smaller for larger
pixel sizes than it is for smaller pixel sizes.

4.5 Detectability of a Signal with FIRST

Table 1 shows, for example, that for a COBE-normalized
CDM power spectrum with Ω0 = 1 and h = 0.5, the pre-
dicted mean-square ellipticity in 1◦ square pixels is (0.022)2

c© 0000 RAS, MNRAS 000, 000–000
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and (0.037)2 in 20′ square pixels. The rms noise in 1◦ for the
survey parameters used above (A = 10, 000 deg2, n̄ = 40
deg−2, and ǭ = 0.4) is (0.0075)2 and it is (0.015)2 for 20′

square pixels, which gives signal-to-noise ratios of 9 and 6
for 1◦ and 20′ pixels, respectively. If the power spectrum is
normalized to the cluster abundance, then the signal is just
near the detection threshold. Since the signal increases with
smaller pixel size as θ−2β

p (with β = 0.2− 0.3) and the noise
increases as θ−1

p , the sensitivity decreases slightly with if a
smaller smoothing scale is chosen.

However, the sensitivity of the signal can be improved
significantly if the full information encoded in the power
spectrum is exploited with a maximum-likelihood analy-
sis. For example, for the COBE-normalized Ω0 = 1 and
h = 0.5 model, Iσ = 1.6 × 10−10 for the window func-
tion corresponding to 20′ pixels. From Eq. (35), the signal-
to-noise with this maximum-likelihood technique would be
A/σA = 22, which is much larger than that obtained by
just comparing the predicted and measured mean-square el-
lipticity using either 20′ or 1◦ pixels. Therefore, a proper
maximum-likelihood analysis can improve the sensitivity by
a factor of 2–3. Given that the signal for cluster-abundance–
normalized power spectra is only on the verge of detectabil-
ity when only the mean-square ellipticity is measured (i.e.,
the predicted mean-square ellipticity is only slightly larger
than 3σ), we conclude that, with this more sophisticated
maximum-likelihood analysis, a high-significance detection
(>∼ 6σ) should be possible with these survey parameters.

5 DISCUSSION AND CONCLUSIONS

In this paper we have calculated the predicted ellipticity cor-
relations of FIRST radio sources expected from weak gravi-
tational lensing due to mass inhomogeneities along the line
of sight for several plausible power spectra for the large-scale
mass distribution in the Universe. We discussed the tensor
Fourier analysis and statistical techniques needed to isolate
the signal in the data. The shear field reconstructed from
measured ellipticities can be decomposed into a “gradient”
and “curl” component. Weak lensing predicts the presence
of only a gradient component. Measurement of the curl com-
ponent can be used to look for non-lensing artifacts in the
data.

We also estimated the amplitude of a signal which could
be detectable with a survey as a function of the survey’s
source density, mean intrinsic source ellipticity, and area of
the survey. We found that a detection of the signal from
cluster-abundance–normalized power spectra could be ex-
pected with good statistical significance (>∼ 6σ) with sur-
vey parameters which approximate those of FIRST. COBE-
normalized models produce an even larger signal.

In addition to the statistical errors which we have taken
into account, there will be systematic effects in the data
which will mimic the effects of weak lensing. However, the
most egregious of these effects can be modeled and cor-
rected for (Refregier & Brown 1997; Refregier et al. 1997)
and it should be possible to approach the statistical limits
discussed here. Even with a slight degradation of the signal-
to-noise expected from systematic effects, the effects of weak
lensing should be visible for cluster-abundance–normalized
power spectra with a maximum-likelihood analysis. A null

result would place strict upper limits on the amplitude of
mass (rather than luminous-matter) inhomogeneities in the
Universe. Seljak (1997) has recently discussed application of
more sophisticated statistical techniques developed primar-
ily for clustering and the cosmic microwave background to
weak lensing from large-scale structure. These will be needed
for precise determination of the power spectrum for future
weak-lensing surveys with better sensitivity.

Although there are several other searches for weak-
lensing correlations with optical surveys (e.g., Mould et al.
1994), as well as some recent claimed detections (Villum-
sen 1995; Schneider et al. 1997), these optical surveys probe
the ellipticity correlation function on much smaller angular
scales than FIRST, which will probe the correlation func-
tion on scales >∼ 1◦. Therefore, by combining the results of
these surveys, the weak-lensing power spectrum can be re-
constructed over a wide angular range. Although the signal
may be more easily detected with optical surveys, these will
probe scales where corrections due to nonlinear evolution of
the power spectrum may be significant. On the other hand,
FIRST will probe the power spectrum in a regime where
nonlinear effects are small, so the comparison with theory
will be less hampered by theoretical uncertainties from non-
linear effects.

The Sloan Digital Sky Survey (SDSS) will provide yet
another data base with which to look for the effects of weak
lensing on large angular scales (Stebbins et al. 1996). How-
ever, SDSS sources will typically be at smaller redshifts.
Therefore, by comparing results from the SDSS and FIRST,
the redshift distribution of the weak-lensing distortions can
be disentangled. Since FIRST and the SDSS will cover the
same region of the sky, one can also cross-correlate the
shear field indicated by FIRST with the foreground density
field mapped by the SDSS. This will provide more stringent
probes of the power spectrum and should also allow a direct
measurement of the bias of SDSS sources.
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